#

Énergie nucléaire

Énergie nucléaire dans les livres blancs


Énergie nucléaire dans les conférences en ligne


Énergie nucléaire dans les ressources documentaires

  • Article de bases documentaires
  • |
  • 10 août 2024
  • |
  • Réf : BN3142

Les systèmes nucléaires spatiaux : introduction

La grande densité énergétique qu’offre l’énergie nucléaire est un atout clé dans l’espace, tant pour la production d’électricité que pour la propulsion. Pour chacun de ces deux domaines d’application, cet article justifie les missions pour lesquelles elle présente des avantages avérés ou potentiels par rapport aux technologies alternatives. Il expose les principes, l’architecture, l’état de l’art et les spécificités des différents types de systèmes nucléaires spatiaux : générateurs électriques à radio-isotopes, à fission nucléaire, moteurs de propulsion nucléaire thermique et systèmes de propulsion nucléaire électrique. La maîtrise de la sûreté de ces systèmes nucléaires spatiaux est également abordée.

  • Article de bases documentaires
  • |
  • 10 nov. 2024
  • |
  • Réf : BN3766

Stockage des déchets radioactifs de haute activité

Cigéo, le projet français de centre de stockage profond de déchets radioactifs, sera conçu pour stocker, dans une installation souterraine implantée dans une couche géologique, les déchets radioactifs de haute activité et moyenne activité à vie longue, produits par les installations françaises depuis le début des programmes nucléaires. L’exploitation du centre s’étendra sur une centaine d’années durant lesquelles et au-delà la sûreté de l’installation devra être maintenue et la radioactivité confinée pour protéger les êtres humains et l’environnement. Depuis plus de 30 ans l’Andra mène des travaux de R&D. Dans le cadre des alvéoles de déchets de haute activité, elle étudie l’évolution des principaux composants métalliques, le chemisage et le conteneur de stockage, sous l’effet combiné des processus mécanique et de corrosion afin d’identifier les matériaux aux propriétés les plus robustes et durables pour pallier ces difficultés.

  • Article de bases documentaires
  • |
  • 10 août 2024
  • |
  • Réf : BN3865

Thermodynamique appliquée aux accidents graves dans les réacteurs nucléaires

Pour comprendre et modéliser l’ensemble des phénomènes physiques pouvant survenir lors d’un accident grave dans un réacteur nucléaire, une bonne connaissance des propriétés des matériaux du cœur du réacteur, en particulier des propriétés thermodynamiques, est indispensable. Lors d’un tel accident, des températures très élevées peuvent être atteintes (potentiellement supérieures à 3 120 K qui est la température de fusion du combustible UO 2 ) de sorte que les matériaux des différents composants du cœur (barre de commande, gaine, combustible…) peuvent fondre et interagir pour former des mélanges complexes (mélange de matériaux communément appelé corium). Le corium est généralement caractérisé par la présence en son sein d’un grand nombre d’éléments chimiques et peut présenter un aspect multiphasique (par exemple, un mélange d’une phase liquide et de phases solides, un mélange de deux phases liquides non miscibles…). La thermodynamique permet de connaître l’état physique à l’équilibre, la manière dont cet état se modifie avec les variables d’état, par exemple la composition et la température et par suite les conditions dans lesquelles une transformation peut se produire dans un sens déterminé. Certes elle ne dit rien des mécanismes de transformation ni de la durée de leur mise en œuvre et donc rien de la cinétique d’atteinte de l’équilibre. Mais pour pouvoir prédire l’évolution de la dégradation du cœur en situation accidentelle, il est important de pouvoir distinguer les évolutions possibles de celles qui ne le sont pas et c’est ce que la thermodynamique permet de faire de façon certaine. En particulier, elle permet de prédire l’état d’ordre du matériau (autrement dit les phases à l’équilibre thermodynamique) en fonction des variables d’état, la connaissance de cet état d’ordre étant un préalable à la mise en œuvre d’un grand nombre de modèles ou d’approches qui sont utilisés dans les codes de simulation des accidents graves. La difficulté de l’appréhension du comportement thermodynamique des matériaux tant sur le plan expérimental que sur celui de la modélisation tient au fait qu’elle doit non seulement porter sur les matériaux des composants du cœur pris individuellement mais également sur les mélanges résultant de l’interaction de ces matériaux entre eux et ce, sur une gamme de température qui s’étend de la température nominale de fonctionnement du réacteur jusqu’à des températures pouvant atteindre la fusion du combustible (3 120 K pour UO 2 ). On mesure aisément la difficulté de la tâche. De manière classique et ce depuis longtemps, la connaissance de la thermodynamique d’un matériau s’appréhende par l’établissement d’un diagramme de phase qui est une représentation graphique de l’état d’ordre du matériau en fonction, généralement, de la composition et la température. Le diagramme de phase est déterminé de manière expérimentale à partir des mesures de différentes propriétés (températures de changement de phase, compositions des phases après trempe…). Des recueils répertorient ces diagrammes établis par l’expérience, pour les matériaux simples, dits systèmes binaires (c’est-à-dire composé de 2 éléments chimiques, voir par exemple  HANSEN (M.), ELLIOTT (R.P.), ANDERKO (K.), INSTITUTE (I.R.) - Constitution of Binary Alloys . ) et parfois pour les systèmes ternaires (3 éléments). Pour le corium, la tâche est d’une toute autre ampleur compte tenu du nombre élevé d'éléments chimiques à considérer et du vaste domaine de température à couvrir. On comprend qu’une approche expérimentale ne peut répondre à elle seule à ce défi, même si elle demeure indispensable. Une approche alternative, la méthode CALPHAD  KAUFMAN (L.), BERNSTEIN (H.) - Computer Calculation of Phase Diagrams with Special Reference to Refractory Metals . dont les principes de modélisation sont rappelés en section  2 , consiste à construire les diagrammes de phase par calcul, d’abord pour les systèmes binaires puis ternaires. Elle présente alors l’avantage de pouvoir prédire la thermodynamique d’un matériau complexe (plus de trois éléments) à partir de la seule modélisation de ces systèmes de plus bas ordre, ce qui en fait une méthode très puissante. Elle permet également d’intégrer dans une fonction unique (G, enthalpie libre ou énergie de Gibbs), l’information expérimentale déduite des diagrammes de phase (limites de domaine de stabilité, températures de transition essentiellement) et celle issue de mesures des grandeurs thermodynamiques (enthalpie de formation, activité, potentiel chimique…), et ainsi d’assurer une cohérence entre ces différentes sources d’information. En ce sens, c’est la richesse de l’information expérimentale qui permet d’associer à la modélisation thermodynamique un niveau de pertinence pour le matériau ou le mélange considéré. Ainsi, nous montrerons, en section  3 , la manière dont l’information obtenue dans les expériences est intégrée dans l’approche CALPHAD. Cette approche mixte, basée à la fois sur le calcul et sur l’expérience, qui est aujourd’hui très largement utilisée pour la description des matériaux complexes, a été mise en œuvre pour décrire la thermodynamique appliquée aux accidents graves avec la constitution de deux bases de données décrites en section  4 , TAF-ID  GUÉNEAU (C.), DUPIN (N.), KJELLQVIST (L.), GEIGER (E.), KURATA (M.), GOSSÉ (S.), CORCORAN (E.), et al - TAF-ID : An international thermodynamic database for nuclear fuels applications . développée sous les auspices de l’Agence pour l’énergie nucléaire (AEN) et NUCLEA  FISCHER (E.) - NUCLEA Thermodynamic Database for Corium Applications . développée par l’Institut de radioprotection et sûreté nucléaire (IRSN). Ces bases de données, compte tenu du travail conduit depuis de nombreuses années, ont atteint un certain degré de fiabilité et quelques calculs d’applications pour l’illustrer seront présentés en section  5 . Aujourd’hui, néanmoins, ces bases requièrent d’être consolidées pour être à même de répondre à la prise en compte des conséquences de l’introduction de nouveaux matériaux (gainages et combustibles dits ATF) dans les réacteurs à eau sous pression ou encore l’évaluation de nouveaux concepts (réacteurs à sels fondus par exemple, section  6 ).

  • Article de bases documentaires : FICHE PRATIQUE
  • |
  • 02 déc. 2022
  • |
  • Réf : 1796

Produire localement de l’hydrogène décarboné (production sans fossile)

Vous avez un projet de produire de l’hydrogène décarboné.

Cette fiche pratique vous donne les méthodes pour réaliser votre projet dans cet ordre chronologique :

  • identifier la ou les sources d’énergies renouvelables locales et les usages de l’hydrogène produit ;
  • identifier les procédés et le type d’équipement pour la production d’hydrogène ;
  • compresser, stocker, distribuer l’hydrogène ;
  • évaluer le bilan carbone de la chaîne de transformation de l’hydrogène.

Comprendre les implications concrètes de la transition énergétique, et bâtir une stratégie d’entreprise à la hauteur de ces enjeux.

  • Article de bases documentaires : FICHE PRATIQUE
  • |
  • 08 déc. 2022
  • |
  • Réf : 1798

Produire du froid avec des solutions à faible contenu carbone

La contribution à l’émission de gaz à effet de serre des dispositifs de production de froid, dont la plupart sont fondés sur l’évaporation d’un fluide – appelé fluide frigorigène – puis sur la compression et la condensation de la vapeur formée, est double :

  • une contribution par émission à l’atmosphère des fluides frigorigènes suite à des fuites ou des manipulations lors de la maintenance ou à l’arrêt définitif de l’installation ;
  • une contribution associée à la consommation d’énergie électrique du compresseur et des auxiliaires tels que pompes et ventilateurs.

Un ensemble d’obligations réglementaires s’appliquent depuis plusieurs années à l’activité de production de froid et tend à imposer des contraintes nouvelles pour les années à venir.

Comprendre les implications concrètes de la transition énergétique, et bâtir une stratégie d’entreprise à la hauteur de ces enjeux.

  • Article de bases documentaires : FICHE PRATIQUE
  • |
  • 07 nov. 2023
  • |
  • Réf : 1818

Produire de l’énergie électrique avec des solutions décarbonées

Vous avez un projet de produire de l’énergie électrique avec des solutions décarbonées.

Cette fiche pratique vous donne les méthodes à suivre pour réaliser votre projet :

  • identifier les sources d’énergies décarbonées locales ;
  • identifier les procédés de production de l’énergie électrique pour chaque source décarbonée locale.

Comprendre les implications concrètes de la transition énergétique, et bâtir une stratégie d’entreprise à la hauteur de ces enjeux.


INSCRIVEZ-VOUS AUX NEWSLETTERS GRATUITES !